1. The Sevenoaks café charges $£ 1.20$ for a coffee and $£ 0.80$ for a tea.

How much would it cost to buy 4 coffees and 3 teas in total?

$$
\begin{aligned}
4 \times \mathcal{L} .20 & =\frac{24.80 \mathrm{Al}}{3 \times 20.80}= \\
& \frac{\mathrm{A}^{2} .40 \mathrm{Al}}{7.20}
\end{aligned}
$$

2. A school has 937 students. In the next academic year, 315 new students join the school while 138 leave. How many students are now at the school?

Answer [1]
3.
a) Round 813,451 to the nearest 1000

b) Round 4.059 to 1 decimal place

c) Round 0.0648 to the nearest hundredth

d) A calculator automatically rounds its answers to two decimal places. After a calculation, it displays the result 325.28.

What is the largest value that the calculation could have produced on this calculator?

$$
\begin{aligned}
& 325.275 \leqslant \underbrace{}_{\text {Answer }} \underbrace{325<325.285}_{\text {Accept }} \\
& \text { (do not accept } \\
& 325.28499 \\
& \text { or a string } \\
& \text { of } \geqslant 2 \text { nines }
\end{aligned}
$$

4.

a) Peggy claims that 1232 divides perfectly by 9 . Is she right? You must show your working.

$$
\begin{align*}
& \text { Either } 1+2+3+2 \text { Fri }^{8} \text {, which is not divisible by } 9 \text {, so op } \\
& \text { or } \\
& 9 \begin{array}{c}
0136 \cdot 88 \\
12^{1} 2^{3} 3^{6} 2^{8} \cdot 0^{8} 0^{1} \mathrm{O} \\
\text { or "remainder } 8^{\prime \prime} \text {, so no } \mathrm{Al}
\end{array} \tag{2}\\
& \text { Answer }
\end{align*}
$$

b) Jenny claims instead that 12345678987654321 is divisible by 9 . Explain how she knows this without needing to perform the division.
she can add the digits. If they sum to
a multiple of i then the number is divisible
by $9 / \mathrm{Al}$ (oe sentences)
\qquad
[2]
5. Use the fact that $28 \times 16=448$ to work out the following:
a) $448 \div 28=$

b) $1.6 \times 2.8=$

c) $44.8 \div 16=$

d) $0.28 \times 1600=$

6. Aran is taking a train from Sevenoaks to Canterbury. This involves a 47-minute train to train to Ashford, followed by a 22 -minute wait, followed by a 14-minute train to Canterbury. If his train leaves Sevenoaks at 10:43, what time will he arrive in Canterbury?
Sevenoatrs:1043
Ashford: 1130
Ashford: 1152

Method 2

$$
\begin{array}{r}
47+22+14=83 \text { ming } \\
\text { /ind } 23 \text { ming } \\
\text { An } . .1208 \vee B 2
\end{array}
$$

Answer \qquad
7. Shade in one square so the pattern below has exactly one line of symmetry:

[1]
8. Lorenzo scores 26 out of 40 in an exam. The pass mark set is 70%. Did Lorenzo pass? You must show all your working.

$$
\frac{26}{40}=\frac{13}{20}=\frac{65}{100}=65 \% / \mathrm{Al} \text { (whatever method) }
$$

$$
\text { Answer No }(\text { since } 65 \%<70 \%)_{[2]}^{A 1}
$$

9. a) Find the size of the angle marked x :

$\sqrt{A l}$ for sight of 57°

$$
180-(2 \times 57) / M 1
$$

Answer \qquad
b) A triangle is formed with two different side lengths, 8 cm and 3 cm .

Yiannis says there are two possible triangles that can be formed. Is he correct? You need to justify your answer via sketches or a sentence.

This con exist!
\checkmark Al for sketch or
sentence justifying
that this triangle can exist.

This con't exist as the sum of the shorter sides is less than the lunger side.
Al for sketch or sentence justifying that this triangle can't exist.
10. Evaluate, leaving your answer as a mixed fraction in its simplest form:

$$
\begin{aligned}
& 3 \frac{3}{4}+5 \frac{1}{3}-0.5^{2} \\
& \frac{15}{4}+\frac{16}{3}-\left(\frac{1}{2}\right)^{2} \\
& \frac{15}{4}+\frac{16}{3}-\frac{1}{4} \\
& \frac{45}{12}+\frac{64}{12}-\frac{3}{12}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{106}{12} \\
& =\frac{53}{6}
\end{aligned}
$$

\checkmark Al for use of
Answer \qquad [3] a cowmen denominator or converting all to decimals
11. The area of triangle $P Q R$ below is $56 \mathrm{~cm}^{2}$. Find a : $\frac{1}{2} \times a \times 8=56$
 $4 a=56$

12. Place the following quantities in ascending order:

13. Evaluate and simplify where appropriate:
a) $3^{2}-4 \times 5$

$$
9-20=-11
$$

b) $\frac{(5+7)-\sqrt{16} \times 2}{8}$

14. Jenny is doing an exercise on fractions. She completes the first two questions below and notices that her answer to B is larger than her answer for A. What is the difference between her two

$$
\begin{aligned}
& \text { answers? } \\
& \text { A. } \frac{31}{y_{1}} \times \frac{38}{9_{3}}
\end{aligned}=\frac{4}{3} \mathrm{Al}
$$

B. $2 \frac{1}{4} \div \frac{3}{2}$

$$
\frac{9}{4}=\frac{3}{2} \quad \sqrt{m i} \text { for appropriate }
$$

$$
\frac{9}{4} \times \frac{2}{3} \text { method to anchises ardor sight of }
$$

$$
=\frac{3}{2} \times \frac{1}{1}=\frac{3}{2} \mathrm{AT}
$$

$$
\begin{aligned}
& \frac{3}{2}-\frac{4}{3} \\
& \frac{9}{6}-\frac{8}{6} \\
& =1 / 6
\end{aligned}
$$

15. The patterns below are made from sticks:

コ - -

Pattern 1
a) In the box, draw Pattern 4.

$$
\begin{align*}
& \text { Al correct } \\
& \text { horizontally } \tag{2}\\
& \text { Al correct vertically }
\end{align*}
$$

b) How many sticks will appear in the twelfth pattern?

$$
3,7,11,15 \ldots \text { Al for expressing sequence numerically }
$$

16. Shown below are 5 cards which are arranged in ascending order:
\square
The range of the cards is $6 . \therefore$ biggest $=11$ Al for sight of 11 The median of the cards is 7. Al for sight of 7
The mean of the cards is 8 .
Find the four missing numbers.
for any step which demonstrates
understanding of mean

$$
\begin{aligned}
a+b+23 & =40 \\
a+b & =17
\end{aligned}
$$

17. A carton of orange juice (shown below) is cuboid shaped. The depth of orange juice is normally 10 cm .
The carton is turned so that it stands on the shaded face. Work out the depth of the orange juice now.

When tipped on side:

Answer \qquad
18. Sevenoaks School has an election for its school council. There are four candidates: Tom, Sheila, Alex and Elise. 540 students voted in the election.
5% of the votes were for Tom.
Sheila received $\frac{2}{9}$ of the votes.
The ratio of the number of votes for Alex and for Elise was 2:1.
How many votes did the winner receive?

 into 3

Answer

19. Zelda wants to put the numbers $2,3,4,5,6$ and 10 into the circles so that the products of the three numbers along each edge are the same, and as large as possible.
What is this product?
multiple possibitités for method mans

/MI for prime factorisation \checkmark MI for all products making 60 or 120
$\sqrt{ } \mathrm{ML}$ for 3 and 6 on different edges $\checkmark M I$ for 5 and 10 in different edges

\qquad [3]

END OF ASSESSMENT

